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Abstract. The kinetics of polyelectrolyte adsorption has been investigated theoretically. In
analogy with Kramers’ rate theory for chemical reactions we present a model which is based
on the assumption that a polyelectrolyte encounters a barrier in its motion towards an adsorbing
surface. The height of the barrier, which is of electrostatic origin, is calculated with a self-
consistent-field (SCF) model. The salt concentration strongly affects the height of the barrier.
At moderate salt concentrations (∼0.2 mol l−1) equilibrium in the adsorption is attained; at low
salt concentration (∼0.01 mol l−1) equilibrium is not reached on the time scale of experiments.
The attachment process shows resemblances to the classical DLVO theory.

1. Introduction

In the context of polymer adsorption, the question of reversibility is posed time and again.
In the past, many experimental results have been taken as evidence for the existence of non-
equilibrium states, and various explanations have been forwarded [1, 2]. Some observations
could be explained without taking irreversibility into account, e.g., sample polydispersity
effects ([3], ch 5 of [4]). However, it is obvious that kinetic barriers cannot be ignored, and
that slow processes should be expected. Recent experimental work has therefore focused on
kinetic aspects of adsorption and desorption, and various interesting slow surface processes
were identified [5–8]. Also, quite general arguments were forwarded that can explain the
apparent absence of desorption by solvent rinsing [9]. From the theoretical point of view,
the problem of adsorption kinetics was recently studied in detail by Semenov and Joanny
[10]. These authors made estimates of the rate of adsorption of a neutral polymer. An
important aspect of their theory is a calculation of the barrier experienced by an incoming
chain for which they apply a variant of Kramers’ theory for reaction rates [11].

It is somewhat surprising, however, that adsorption kinetics of polyelectrolytes
has not yet been considered theoretically. Polyelectrolytes experience not only short-
range interactions between their segments and the adsorbent surface, but also rather
strong electrostatic interactions. In particular, when short-range attraction competes with
electrostatic repulsion, one may anticipate a situation in which a strong electrostatic barrier
impedes adsorption that would be thermodynamically allowed. This situation is very akin
to that of charged colloidal particles that remain stable despite the lower free energy of the
aggregated state, simply because of an insurmountable kinetic barrier of electrostatic origin
[12].

Strong hysteresis effects have indeed been observed in several experimental studies of
polyelectrolyte adsorption. For example, polyelectrolytes with weakly dissociating groups
can be adsorbed to substantially higher amounts if, instead of adsorbing at a fixed pH, one
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goes through a pH cycle, i.e., the polymer is first adsorbed at a pH where it has (very)
little charge, after which the polymer is charged up by a shift in pH; this has been termed
‘enhanced adsorption’ [13]. Another observation pointing to the presence of a kinetic barrier
is the interaction between two mica surfaces covered with (positively charged) polylysine, as
measured by Luckham and Klein in the surface-force apparatus [14]. Upon first approach,
these authors found a long-range repulsion, which disappeared once the two surfaces were
brought close together. This strongly suggested the presence of long dangling ends that
needed to be pushed through a barrier in order to adsorb. With neutral polymer, such
behaviour has never been found.

Recently we have studied the adsorption of carboxymethyl cellulose (CMC) on inorganic
oxide particles (TiO2, α-Fe2O3) as a function of pH, ionic strength, and polymer structure
(degree of carboxylate substitution, chain length). The results showed features similar to
those discussed above. In particular, the effect of a pH cycle was very pronounced [15].

In connection with the above-mentioned features we wondered to what extent
electrostatic repulsion played a role in the adsorption kinetics, and we decided to tackle
this problem theoretically. Our paper is organized as follows. We first briefly review the
basic rate equation which is solved using the approach introduced by Semenov and Joanny in
combination with a self-consistent-field (SCF) theory for (polyelectrolyte) adsorption. Then
the SCF method is described by which the height of the adsorption barrier as a function
of coverage is obtained. In the results section we first discuss equilibrium adsorption of
polyelectrolytes which have an additional non-Coulombic (‘specific’) interaction with the
substrate. This is followed by a set of numerical results for the rate of adsorption under
a variety of experimental conditions. In particular kinetic adsorption curves are calculated.
These curves are used to determine the extent of reduction of the adsorbed amount due to
kinetic factors assuming realistic experimental time scales. Finally, we discuss our kinetic
model bearing in mind relevant experimental data.

2. Theory

A polymer molecule, moving to an adsorbent surface, meets a number of resistances. At
large distance from the surface there is the resistance due to transport in solution, where
the mechanisms of convection and diffusion operate. Next, there can be a barrier in the
proximity of the surface, e.g., due to the presence of a layer of adsorbed polymer molecules,
or due to an electrical field. We assume that this barrier operates over short distances as
compared to the transport contribution. We now suppose that, shortly after starting an
experiment, a stationary state is established, where the concentration profile in the solution
changes only very slowly with time. One can then write for the mass transport of polymers
towards the surfaceJt

RtJt = cb − cs(0). (1)

HereJt is expressed in moles per square metre per second,cb is the bulk concentration far
from the interface, andcs is the subsurface concentration (mol m−3) at absorption, i.e., the
concentration of free polymer molecules that find themselves just near the adsorption barrier.
Rt is the transport resistance in seconds per metre, which depends on the hydrodynamic
conditions and on the diffusion coefficient [16]. For example, in an impinging-jet geometry,
Rt is given by [17]

R−1
t = 0.776(V α)1/3(D/r)2/3 (2)

whereV is the fluid velocity,α a dimensionless streaming intensity parameter,r the radius
of the inlet tube andD the diffusion coefficient of the polymer. The molecules that have
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reached the barrier can pass in both directions (adsorption and desorption). The forward
flux of adsorbing molecules(d0/dt)fw must obey first-order kinetics with respect to the
subsurface concentration:

Rb(0)

(
d0

dt

)
fw

= cs(0) (3)

whereRb is the barrier resistance including the effect of a partial coverage of the surface.
In order to obtain the backward flux, we note that in equilibrium backward and forward flux
must be balanced. Hence, the backward flux(d0/dt)bw (desorption of polymers) is given
by

Rb(0)

(
d0

dt

)
bw

= −ceq(0) (4)

whereceq is the equilibrium concentration corresponding to a particular value of0. The
net flux (d0/dt) is given by the sum of the forward and backward contributions. For not
too short times, the flux reaches a steady state situation, andJt = d0/dt [7]. Obtaining the
net flux from equations (3) and (4) after elimination ofcs we arrive at[

Rb(0)+ Rt
]d0

dt
= cb − ceq(0) (5)

where bothRb and ceq are functions of0. The dependence is such thatRb increases
with adsorption;ceq and0 are related by means of an adsorption isotherm. Equation (5)
suffices to calculate the rate of the adsorption process, provided the equilibrium adsorption
isotherm0(ceq) and the barrier resistanceRb(0) are known. Finally, integration leads to
the time-dependent adsorption0(t).

In order to obtain the barrier resistance, we use as do Semenov and Joanny [10], the
Kramers equation:

Rb(0) =
∫

1

D′
eu(0, z

∗)/kT dz∗. (6)

In this equation,u(0, z∗) is a potential energy felt by an adsorbing molecule which is at
a distancez∗ from the point where it first touches the surface. Since the potential is a
function of the charge at the surfaceu is a function of the adsorbed amount.D′ is an
effective diffusion coefficient for the adsorption event, andkT has its usual meaning. The
integral is taken over the entire path where the potential differs from the bulk value. In our
approach we assume that as soon as one segment makes contact with the surface the chain
is adsorbed. We neglect the resistance that the chains meets in the process of spreading out,
i.e. motion towards the surface is the rate determining step in the attachment process.

At this point it is important to realize that the potential energy experienced by an
entering polymer chain depends on the polymer conformation, since the chain potential
energy is a sum over the potential energies of all the monomers, and these feel different
energies at different distances from the wall. Chains having one monomer at distancez∗

whilst other segments are positioned at distancesz > z∗ will experience less resistance
than a chain having more than one segment atz∗. We now suppose that, for eachz, the
polymer explores all possible configurations (with appropriate Boltzmann weighting) with
one segment atz = z∗ and all other segments atz > z∗. Hence, exp(u(0, z∗)/kT ) is
actually a partition function (with respect to large distance) which therefore will be denoted
asQ∞/Q(z∗) [10], whereQ(z∗) andQ∞ are partition functions of a chain with its closest
monomer atz = z∗ (in the proximity of the surface) or at large distance from the surface
(in the bulk) respectively.
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Such a partition function is readily evaluated using the numerical procedure first
proposed by Scheutjens and Fleer ([18], ch 4 of [4]). In this method, end-point probabilities
G(z; s) are calculated for walks on a lattice consisting ofs steps and ending atz. This can
be done such that the walks are restricted to the half spacez > z∗; we denote these end-point
probabilities asGz∗f (z; s). The walks are generated taking into account the interactions of
segments with their surroundings, i.e. they take place in the ‘field’ which represents these
interactions. Obviously,z∗ = 1 corresponds to tails belonging to an adsorbed chain; we
therefore restrict the calculation toz∗ > 1. If two such walks, one of lengths, and one
of lengthN − s + 1, are connected atz∗, one obtains a polymer chain with a length ofN
segments which is just at a distancez∗ from the touching point. The associated probability
is Gz∗f (z; s)Gz∗f (z; N − s + 1). Summing this probability over all values ofs from unity
to N (and correcting by a factorGz∗ for the double counting of segments which occurs in
both walks), we obtain the required partition functionQ(z∗):

Q
(
z∗
) = 1/Gz∗

N∑
s=1

Gz∗f (z; s)Gz∗f (z;N − s + 1). (7)

An similar expression forQ∞ can be obtained. In the lattice model exp(u(z∗)/kT ) is not a
continuous function but it has discrete values in each lattice layer. ThusRb(0) is expressed
in the lattice model as

Rb(0) =
∫

1

D′
Q∞
Q(z∗)

d
(
z∗/l

) ∼= 1

D′

z∞∑
z∗=2

Q∞
Q(z∗)

(8)

where z∞ defines the layer whereQ∞/Q(z∗) = 1. Furthermore it is assumed thatD′

does not depend on the position of the moving chain. The model employed to generate
u(z∗) profiles was the multi-Stern-layer approach first discussed by Böhmer et al [19].
The polyelectrolyte solution, containing as basic units (charged) polymer segments, solvent
molecules, and free ions, fills a lattice, such that each lattice cell contains exactly one unit.
Short-range (contact) interactions, such as those occurring between various units, or between
units and the substrate, are taken into account by means of Flory–Huggins type interaction
parameters. Electrostatic energies are incorporated by including an electrostatic Boltzmann
term in the probability for each charged species (polymer segments and salt ions [19]),
and calculating the electrostatic potential by a discrete version of the Poisson equation.
All densities and potentials are averaged in planes of lattice sites parallel to the surface
(mean-field approximation); correlations in the parallel directions are ignored. As discussed
in [19], this is an acceptable description for sufficiently high polymer densities (where
lateral interaction between the chains becomes important) and monovalent ions in aqueous
solution. The equilibrium density profile alongz (the normal to the adsorbent plane) for
each of the components is calculated in a self-consistent manner, using the field to generate
the conformations, and deriving a density profile, and hence a field from the weighted sum
over all conformations. In this way, equilibrium polyelectrolyte density profiles, and their
associated adsorbed amount0, can be calculated for any imposed equilibrium concentration,
so that the adsorption isotherm is known. Using the density profiles, the barrier height can
be immediately calculated as prescribed by equation (8).

It should be no surprise that the resistance is largely of electrostatic origin. Indeed,
the resistanceRb calculated by the method described above is for neutral molecules almost
negligibly small when compared to realistic values ofRt . Hence, we are dealing with an
electrostatic double-layer repulsion between two particles of like charge. Because we have
assumed a homogeneous density parallel to the surface, the repulsive interaction energy
uel (per unit area) calculated is that for two charged flat plates approaching each other.
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According to standard double-layer theory [12],uel can be expressed in the minimum
dimensionless potentialym between the two plates in a 1–1 electrolyte solution:

uel = −2csalt kT
∫ z∗

∞

(
cosh

(
ym
(
z∗
))− 1

)
dz∗ (9)

wherecsalt is the particle concentration of a 1–1 electrolyte.

3. Results

3.1. Choice of parameters

SCF calculations were performed for a cubic lattice with a spacingl = 0.5 nm. All
interaction parameters, except the interaction between polymer segments and the surface
(χs) were chosen to be zero. Relative permittivitiesεr were set to 80 for all components.
Calculations were performed for polymers with a chain length of 100 segments, and the total
number of lattice layers in the system was also set equal to 100. Our numerical calculations
are restricted toχs = 5; in the analytical model we used various values ofχs .

Numerical integrations of equation (5) were obtained by use of a stepsize-adapted fourth-
order Runge–Kutta algorithm [20]. In each step the solution is calculated for two intervals
with stepsizeh and one interval using stepsize 2h. If the relative difference between the
solutions is less than 10−5, the stepsize is doubled. The value ofR−1

t was taken to be
10−6 m s−1, in accordance with typical experiments in an impinging jet flow cell. The
diffusion coefficientD′ was chosen as 10−12 m2 s−1, which is a typical value for a polymer
of about 100 segments.

In the following, the adsorbed amount will be represented in terms of the surface
coverage in monolayersθ , i.e. the number of segments in adsorbed chains per lattice site.
For comparison with experiment,θ can be readily converted into0 (p 472 of [4]). The salt
concentration is given as a volume fraction (φsalt ). The conversion ofφsalt to csalt depends
on lattice spacing and Avogadro’s number [21]; for a cubic lattice withl = 0.5 nm one
obtainscsalt = 13φsalt (csalt in mol l−1).

3.2. Adsorption equilibrium

Before paying attention to the kinetics of adsorption, we first consider adsorption at
equilibrium (θeq). In our discussion we will restrict ourselves to adsorption of strong
(quenched) polyelectrolytes. A possible approach is to use the numerical self-consistent-
field model as proposed by Böhmeret al [19]. However, for our discussion of trends it
is just as instructive to use the analytical approximation proposed by Fleer [22]. Fleer
considers the adsorption of polyelectrolytes on aneutral surface under the action of a non-
electrostatic (‘specific’) interaction, the strength of which is given by the parameterχs . The
crucial assumption of the theory is that the polymer chains adsorb in flat conformations,
i.e., all segments are in contact with the wall, and the contribution of loops and tails to
the adsorbed amount is negligible. Comparisons with numerical calculations using the full
Böhmer theory have shown that this assumption is justified for cases where the electrostatic
interactions are dominant, i.e. where the polyelectrolytes are strongly charged and the salt
concentration is not extremely high [22]. In order to preserve electroneutrality, the charge
of the adsorbed segments, which is given by the product of the segment chargezp and the
amount of adsorbed segmentsθsp, must be compensated by a diffuse layer of countercharge.
According to the Gouy–Chapman theory, the total charge in such a layer is proportional to
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εrκ sinh(y/2), whereκ is the inverse Debye length, andεr the relative dielectric constant.
Since we are dealing with lattice calculations, we rewrite this as 0.67

√
φsalt sinh(y/2), where

y is the dimensionless potential of the adsorbed layer at the surface, normalized with respect
to kT , and the proportionality constant of 0.67 [22] takes the properties of the lattice and
the dielectric properties of water at room temperature into account.

The adsorbed amountθsp can be expressed in terms ofy and the non-electrostatic affinity
χs for the surface:θsp = 1− 3

2 exp(zpy−χs). Hence,θsp must be solved from the following
implicit expression:

zpθsp = zp
(
1− 3

2 ezpy−χs
) = 0.67

√
φsalt sinh(y/2). (10)

For zp > 0.5 the surface potentialy attains a value of about four. For such high values
sinh(y/2) may be approximated as12 exp(y/2). In the special case wherezp = 1 the surface
potential can be immediately calculated from a quadratic equation in exp(y/2), yielding

ey/2 = 1
3 eχs

(− 1
3

√
φsalt +

√
1
9φsalt + 6 e−χs

)
(11)

which gives, in combination with equation (10), an explicit expression for the adsorption
as a function of the salt concentration.

Assuming that the total adsorption at acharged surface can be written as the sum
of a charge compensation contribution (θcc = −zs/zp) and a specific contributionθsp as
described above, the total adsorption, as a function of surface charge and salt concentration,
can be readily obtained from the analytical model. In figure 1 the adsorbed amount at
φsalt = 10−3 is shown as a function of the segment charge for four values ofχs . For
comparison, the adsorbed amount calculated with the lattice model atχs = 5 is also given
(dashed curve). All curves show a decrease in the adsorbed amount as the segment charge
increases. Becauseχs determines the potential and, hence, the charge at the surface, a
higher affinity for the surface will allow more charges in the surface layer, resulting in a
higher adsorption. As can be seen from the curves forχs = 5 the results obtained with the
one-layer model agree reasonably with the full numerical calculations based on the Böhmer
theory. In figure 2 we show the adsorption of a polyelectrolyte (zp = 1) as a function of the
surface charge density (zs) at various salt concentrations. It is not our purpose to discuss
the discrepancies between the two models but merely to illustrate that general trends can
easily be obtained with the analytical model. In our discussion on the kinetics we will use
the data calculated with the original Böhmer model.

3.3. Kinetics

As pointed out in the previous section, charged polymer chains approaching the surface will
feel a repulsion that increases as the surface charge due to adsorbed polymers builds up. In
figure 3, the ratioQ∞/Q(z∗) is shown as a function of the distance from the surface for
a neutral surface covered with polyelectrolyte up to a coverage of 0.1 and for five volume
fractions of 1–1 electrolyte. Of course, at large distance from the surface the incoming
chain does not feel the presence of charged segments at the surface,Q(z∗) = Q∞. As
the polymer approaches the surface the presence of adsorbed segments hampers the motion
towards the surface. As can be seen, the resistance increases strongly with the distance to
the surface (note the logarithmic scale), in particular if the salt concentration is low.

At relatively large separation, the potential in the region where the double layers of
surface and incoming polymer overlap are low, so a Debye–Hückel approximation makes
sense. Hence, we can write in the overlap region for the electrical potential of the surface
layer∼exp(−κz) and for the approaching polymer∼exp(−κ(z∗ − z)). The dimensionless
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Figure 1. Adsorbed amount as a function of the segment charge for four values ofχs and
φsalt = 10−3. The dashed curve shows the adsorption calculated with the Böhmer SCF lattice
model for a chain withr = 100.

Figure 2. Adsorption at equilibrium of a strong polyelectrolyte (zp = 1) as a function of the
surface charge for three volume fractions of 1–1 electrolyte. Solid curves are calculated with
the analytical model, dashed curves with the Böhmer SCF model.

electric potential in the overlap region (yt ) can reasonably be approximated by the sum
of the two individual potentials [23]. The distance where the minimum inyt (ym) is
situated is easily obtained from minimizingyt with respect toz. Realizing that for small
ym cosh(ym) can be approximated as 1+ y2

m/2 one can easily show from equation (8) that
uel is proportional to (φsalt /κ) exp(−κz∗). When the logarithm ofuel/kT is plotted against
z∗, a straight line is indeed observed for small double-layer overlap (figure 4).

The shape of the potential profiles as given in figure 3 shows a resemblance to
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Figure 3. Resistance for polyelectrolyte (zp = −1) approaching an equally charged surface.
The bare surface is uncharged. Curves are calculated forθeq = 0.10 for five volume fractions
of 1–1 electrolyte.

Figure 4. Logarithm of repulsive potential as a function of the separation distancez∗ between
polyelectrolyte and surface. The meaning of the dotted lines is explained in the text.

the interaction curve of colloidal particles. In fact, the processes of coagulation and
polyelectrolyte adsorption are quite comparable. The classical Fuchs theory [24] for the
rate of slow coagulation considers diffusion of a particle in a force field produced by the
other particle. The force field has a repulsive part which comes from the overlap of the
double layers of the coagulating particles. In addition, there is an attractive part arising
from the Van der Waals interaction between the particles. In a similar way, there is a
short-range attraction between the polyelectrolyte and the surface which shows up as a
break in the resistance curve atz∗ = 1. When the profiles given in figure 3 are plotted
semi-logarithmically (as done in figure 4) straight parallel lines are found, which shows



Kinetics of polyelectrolyte adsorption 7775

Figure 5. Resistance for a polyelectrolyte (zp = −1) approaching a polymer-covered surface
for φsalt = 10−3. The bare surface is uncharged; curves are calculated for several values ofθeq
(i.e. for different stages in the adsorption process).

once more that we are dealing with double-layer overlap of two flat plates. The effect of
increasing adsorption on the resistance is illustrated in figure 5. As more charges accumulate
at the surface, diffusion towards the surface will become less likely.

As pointed out above the curves in figures 3 and 5 can be considered as resistances that
a polyelectrolyte meets on its way to the surface. By adding the resistances in all layers,
the barrier for adsorption is obtained (equation (6)). In figure 6Rb is given as a function
of the adsorbed amount, i.e. in different stages of the adsorption process, for five volume
fractions of 1–1 electrolyte. As anticipated,Rb is an increasing function ofθeq .

In the SCF modelQ(z∗) is calculated by means of a walk on a lattice. The weight
of a step in a layer is a function of the volume fraction of the components in that layer,
i.e. the potential in the Boltzmann factor depends on volume fractions introducing the self-
consistency in the lattice model (ch 4 of [4]). As a lattice layer becomes more occupied with
a component, the probability of making a step towards that layer decreases. When a layer
is completely filled with a component stepping towards that layer is not allowed. Applied
to the surface layer this means that motion of a polymer towards the surface layer is not
allowed as the surface layer is completely filled with polymer segments (i.e. at saturation
of the surface). The manner in whichRb is calculated takes saturation of the surface layer
automatically into account, i.e.Rb will diverge to infinity as the volume fraction of segments
at the surface approaches unity.

At high salt concentrations a gradual increase in the barrier is observed. Due to the large
screening, repulsion only manifests itself at short distances from the surface. Decreasing
the salt concentration increases the adsorption barrier dramatically. At low surface coverage
there is a moderate barrier for adsorption; as more segments adsorb, the barrier increases very
steeply (note the logarithmic scale forRb). Again, we note the similarity with coagulation
kinetics. The effectiveness of collision (W ) leading to coagulation is determined by the
potential barrier of the process. It turns out thatW is almost entirely determined by the value
of the potential at the maximum of the interaction curve of the coagulating particles, i.e. the
contributions at short distances dominate the barrier resistance. A similar observation can be
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Figure 6. Potential barrierRb for the adsorption of a polyelectrolyte (zp = −1, r = 100) on
an uncharged surface in different stages of the adsorption process. Volume fractions of 1–1
electrolyte are indicated in the figure.

made from figures 3 and 6. Particularly for low salt concentrations the main contributions
to Rb originate from layers close to the surface.

Once the barrier for the adsorption is known one can calculate the adsorption as a
function of time. In figure 7 the adsorption on an uncharged surface as a function of time
is calculated for five volume fractions of salt. At low surface coverages the adsorption
increases linearly in time. This is the regime where mass transport from the bulk solution
towards the surface is the rate determining step in the adsorption process. In this stage
the adsorption is not determined by salt concentration since the adsorption barrier is too
small to have any effect on the adsorption rate. As more segments become attached to the
surface, the barrier for adsorption increases. When the barrier exceeds the resistanceRt
for the transport process the increase in adsorption is no longer linear in time. Now the
attachment step determines the adsorption rate. On relatively short timescales, a levelling
off in the adsorption is observed for all salt concentrations, as if saturation had been
obtained. However, this is not true for all curves. In the case ofφsalt = 0.02 the adsorption
corresponding to equilibrium is indeed reached. The curves forφsalt = 0.002 and lower
reach pseudo-plateau levels which do not correspond to equilibrium. This is seen more
clearly from figure 7(b) where the adsorption is plotted against the time on a logarithmic
scale. The end-points of the curves correspond to the adsorption at equilibrium for a polymer
concentration of 300 mg l−1 (volume fraction 10−4). As the figure clearly illustrates, the
time needed to reach equilibrium depends strongly on the salt concentration. In the case
of moderate salt concentration (φsalt = 0.005–0.02) the equilibrium in the adsorption is
reached within a timescale comparable to that used in adsorption experiments (103–105 s).
Adsorption equilibrium is not reached for low salt concentrations.

The features that are observed for the adsorption on an uncharged surface also show up
for an oppositely charged surface (zs = 0.15). Figure 8 showsRb for a positively charged
surface onto which a negative polyelectrolyte adsorbs. Atθeq < 0.15, the surface charge
is incompletely compensated by adsorbed polyelectrolyte, so that the net charge seen by
incoming segments is opposite to the charge of the segments, and there is no barrier. As
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Figure 7. Adsorption of a polyelectrolyte (zp = −1) on an uncharged surface as a function of
time for five volume fractions of 1–1 electrolyte: (a) the adsorption on a short timescale; (b)
the adsorption for long times (note the logarithmic scale). Endpoints in (b) are for equilibrium
adsorption and a polymer concentration of 300 mg l−1 (volume fraction 10−4).

soon as the surface charge is compensated, a repulsive potential is felt by the incoming
chains, which shows up in an increase in the adsorption barrier. Comparing the curves
in figures 6 and 8 it appears that the curves for the charged surface atθeq = 0.15 nearly
coincide with those forθeq at the uncharged surface, indicating that the net charge at the
surface is an important parameter that determines the potential barrier.

The calculated time-dependent adsorption on the oppositely charged surface is given in
figure 9. The region where mass transport determines the adsorption rate is almost entirely
restricted toθeq < 0.15 (surface charge is not yet compensated by polyelectrolyte). As soon
as the surface charge is compensated the adsorption reaches a pseudo-plateau for low salt
concentrations. Equilibrium is reached for moderate salt concentrations (φsalt = 0.005–
0.02), but not for low salt concentrations. The abrupt ending of the time-dependent
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Figure 8. Potential barrierRb for the adsorption of a polyelectrolyte (zp = −1, r = 100) on
an oppositely charged surface as a function of surface coverageθeq . Salt concentrations (1–1
electrolyte) are indicated in the figure.

adsorption curves stems from the shape of the adsorption isotherm. The calculated isotherms
(not shown in this paper), i.e.θeq as a function of the equilibrium concentration, are of the
high-affinity type. At (very) low concentrations the adsorption increases steeply. The
adsorbed amounts corresponding to the end-points in the time-dependent adsorption curves
are nearly reached for low concentrations (∼0.3 mg l−1). The high-affinity character of the
isotherm implies thatceq − cb in equation (5) is only equal to zero whenθkin approaches
θeq very closely. Sinceceq approachescb so abruptly the adsorption also ends abruptly.

In the previous paragraphs we have mainly considered the influence of the salt
concentration on the adsorption. The influence of the surface charge (zs) is illustrated
by means of figure 10. In this figure the adsorption is given as a function ofzs . The
full curves represent the adsorption calculated att = 1000 s. For comparison we show the
corresponding adsorption at equilibrium, as calculated with the lattice model (dashed curves).
Forφsalt = 0.005 the kinetically limited adsorption is rather close (∼75%) to its equilibrium
value. For the two highest salt concentrationsθkin coincides with the equilibrium adsorption.
However, forφsalt = 0.001 and 0.002,θkin is much smaller thanθeq , in particular if the bare
surface charge becomes small. Hence figure 10 illustrates again the pronounced influence
of the salt concentration on the adsorption kinetics. Comparingθkin with the amountθcc
corresponding to charge compensation, it turns out thatθkin is simply the sum ofθcc and an
non-electrostatical contribution, which forzs > 0 does not depend on the surface charge.
This is becauseRb depends on thenet chargeof the surface layer (figures 6 and 8). The
large divergence between kinetically limited adsorption and equilibrium adsorption with
decreasing surface charge can now easily be understood. The relative contribution ofθcc
increases as the surface charge increases. Eventually, charge compensation will have the
main contribution to the adsorption andθkin will approachθeq . At decreasing surface charge
θcc also decreases so the influence of the barrier on the total adsorbed amount becomes more
important, thereby increasing the difference betweenθkin andθeq .

In figure 11 the ratio between the adsorption after 1000 s and the adsorption at
equilibrium is given as a function of the polymer charge. For a polyelectrolyte with a small



Kinetics of polyelectrolyte adsorption 7779

Figure 9. Adsorption of a polyelectrolyte (zp = −1) on a charged surface (zs = 0.15) as a
function of time for five volume fractions of 1–1 electrolyte. The point where surface charge
is compensated by the adsorbed polyelectrolyte is indicated. (a) The adsorption on a short
timescale; (b) the adsorption for long times (note the logarithmic scale). End-points in (b) are
for equilibrium adsorption and a polymer concentration of 300 mg l−1 (volume fraction 10−4).

zp, the adsorption approaches that of an uncharged polymer. Since effects of electrostatics
are small, the adsorption is not hampered by an electrostatic barrier, hence the ratioθkin/θeq
approaches unity. As the segment charge increases the adsorption will be increasingly
affected by an electrostatic barrier, thereby increasing the difference betweenθkin andθeq .
Upon increasing the segment charge, bothθkin and θeq will decrease, however not to the
same extent. Initially the former decreases more strongly; at largezp the decrease inθeq
dominates. Consequently, beyond aboutzp = 0.7 the ratioθkin/θeq increases again. For
high segment charge it is obvious that only small adsorptions, even at equilibrium, are
possible.
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Figure 10. Influence of surface chargezs on polyelectrolyte adsorption (zp = −1) at three salt
concentrations (indicated). The full curves represent the adsorption calculated att = 1000 s
(θkin); dashed curves represent the equilibrium adsorption calculated with the lattice model (θeq ).

Figure 11. Influence of the segment chargezp on the kinetically limited adsorptionθkin, as
determined att = 1000 s.

4. Discussion

Our results show very convincingly the large effect that an electrostatic barrier has upon the
rate of adsorption. Qualitatively, most of the results could be anticipated using arguments
from the DLVO theory for the stability of lyophobic colloids which treats the interaction
between two rigid charged particles. The present theory deals explicitly with flexible chain
molecules with many internal degrees of freedom. From the results it seems that this does
not change the interaction in a qualitative way. To what extent the molecular flexibility has
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a quantitative influence remains to be studied.
In our model, the attractive part of the polymer–surface interaction has a very short

range. As a consequence, the adsorption kinetics depends exclusively on the electrostatic
part of the interaction. The equilibrium adsorbed mass, however, is strongly influenced
by χs . As a result, the discrepancy between the equilibrium and the kinetically limited
adsorption becomes larger asχs increases. This implies that reversibility is most likely
to be found for systems whereχs is small or even zero; this seems to be supported by
experiments [25].

All our calculations have been performed for the case of a polyelectrolyte and a surface
with a fixed charge density (quenched system). In the literature equilibrium adsorption
for annealed systems (with a pH-dependent charge) has also been considered [22, 26]. In
terms of DLVO interactions, the former case can be compared to the case of constant
charge, whereas the latter case corresponds to a constant potential. It is well known that
the constant-potential case leads to weaker repulsion at short distances, but that coagulation
rates are qualitatively very similar for both cases. We therefore expect that the present
calculations are also relevant for the adsorption kinetics of annealed polyelectrolytes.

In our approach we have used a mean-field model, i.e. discrete charges are smeared
out in a layer. In real systems, charges are often localized so that discrepancies of our
model with experiments can be expected. The localization of charges will manifest itself
mostly at low adsorption where the surface coverage is rather heterogeneous. At large
distance from the surface the smearing out of charges is a reasonable approximation.
As a polymer approaches a surface more closely the electric field generated by adsorbed
molecules becomes inhomogeneous. If a chain approaches locally a surface with bare spots
it can pass more easily through the barriers raised by adsorbed chains. Hence, the barrier
for adsorption is expected to be less than when the charges are smeared out; at lowφsalt
our model tends to overestimate the adsorption barrier, i.e. the adsorption is underestimated.
As the surface coverage increases the approximation of smearing out of charges is more
plausible; the adsorption is less underestimated for higherφsalt . On the other hand our
model tends to overestimate the adsorption since the process of spreading is not taken into
account.

We finally comment on the experiments with carboxy methyl cellulose (CMC) presented
in [15]. Clearly, these data show a large difference in adsorbed amounts between a case
where the pH is kept fixed during adsorption and a case where a pH cycle (high/low/high)
is applied. It is therefore tempting to conclude that the adsorption at fixed pH is kinetically
blocked, and that the cycle leads to an adsorbed amount closer to equilibrium. However, this
is at variance with the observation that even at an ionic strength as high as 0.5 M there is still
a substantial effect of cycling the pH. According to our calculations, the barrier resistance
should be negligible under such conditions so that equilibrium is reached. Evidently the
CMC/oxide system has features not covered by the present treatment.

In our opinion the discrepancies between our model and experiment can be attributed
to an incomplete description of the desorption step. It is beyond the scope of this paper to
discuss the desorption step in detail: we limit ourselves to a brief remark. It is likely that
the localized interactions, e.g. ion pairs between polyelectrolyte and charged surface sites
or the formation of strong (chemical) bonds [27], play an important role in the desorption
process. Due to the interaction with the surface, a barrier will be present for the desorption,
which is high in the case of ion pairs or strong chemical bonds. As soon as surface bonds
are broken desorption becomes possible. Flexible chains can desorb their segments one by
one. Experimentally, this may show up as an increase of the (hydrodynamic) layer thickness
of the adsorbed layer. Complete desorption will take place if the number of segments in
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contact with the surface is below some critical value. The critical number decreases as the
interaction with the surface becomes stronger. Desorption of semi-flexible or rigid chains
will occur less gradually as compared to flexible chains. The rigidity of the chain does not
permit a desorption of segments one by one. Each desorption step involves a number of
segments roughly given by the persistence length. The barrier for the desorption of rigid
chains will therefore be higher than for flexible chains.

5. Conclusions

Adsorption of polyelectrolytes at low ionic strength on surfaces providing a short-range,
non-electrostatic attraction is kinetically blocked by an adsorption barrier of electrostatic
origin. The height of this barrier, and its effect on the adsorption kinetics, was generally
calculated by combining the argument based on the Kramers theory of reaction rates with
the Scheutjens–Fleer–Böhmer self-consistent-field theory for polyelectrolyte chains near a
charged interface. The theory explains why the adsorbed amounts found in experiments
always correspond closely to charge neutralization, as if specific interactions with the
substrate do not exist, and why hysteresis should be expected upon cycling the pH, i.e., the
polymer charge density.
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